skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moosman, Owen_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phased genomes and pangenomes are enhancing our understanding of genetic variation. Accurate phasing and assembly in repetitive regions of the genome remain challenging, however. Addressing this obstacle is crucial for studying structural genomic variation, such as copy number variations (CNVs) common to repetitive regions. Polar fishes, for example, evolved repetitive tandem arrays of antifreeze protein (AFP) genes that facilitate adaptation to freezing and expanded in copy number in colder environments. AFP CNVs remain poorly characterized in polar fishes and may be illuminated by haplotype-aware approaches. We performed long-read sequencing for two polar fishes in the suborder Zoarcoidei and leveraged additional published long-read data to assemble phased genomes. We developed a workflow to measure haplotype diversity in CNV while controlling for misassembly and switch errors—a change from one parental haplotype to another in a contiguous assembly. We presentgfa_parser, which computes and extracts all possible contiguous sequences for phased or primary assemblies from graphical fragment assembly (GFA) files, andswitch_error_screen, which flags potential switch errors.gfa_parserrevealed that assembly uncertainty was ubiquitous across AFP array haplotypes and that standard processing of graphical fragment assemblies can bias measurement of haplotype CNVs. We detected no switch errors in AFP arrays. After controlling for misassembly and switch error, we detected haplotype diversity of AFP CNVs in all studied polar Zoarcoidei species and in 60% of AFP arrays. Intraindividual haplotype diversity spanned differences of 3–16 copies. Our workflow revealed intraspecific genomic diversity in zoarcoids that likely fueled the evolution of AFP copy number across temperature. 
    more » « less